Composite Noise Reduction of ERPs UsingWavelet, Model-Based, and Principal Component SubspaceMethods
نویسندگان
چکیده
This paper used three theoretically different algorithms for reducing noise in event-related potential (ERP) data. It examined the possibility that a hybrid of these methods could show gains in noise reduction beyond that obtained with any single method. The well-known ERP oddball paradigm was used to evaluate three denoising methods: statistical wavelet transform (wavelet-Z), a smooth subspace wavelet filter (wavelet-S), and subspace PCA. The six possible orders of serial application of these methods to the oddball waveforms were compared for efficacy in signal enhancement. It was found that the order was not commutative, with the best results obtained from applying the wavelet-Z first. Comparison of oddball and frequent trials in the grand average and in individual averages showed considerable enhancement of the differences. It was concluded that denoising to remove variance caused by rare sizeable artifacts is best done first, followed by state space PCA and a light-bias model-based wavelet denoising. The ability to detect and distinguish the effects of variables (such as task, drug effects, individual differences, etc.) on ERPs related to human cognition could be considerably advanced using the denoising methods described here.
منابع مشابه
Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملDevelopment, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings
EEG data acquired in an MRI scanner are heavily contaminated by gradient artifacts that can significantly compromise signal quality. We developed two new methods based on independent component analysis (ICA) for reducing gradient artifacts from spiral in-out and echo-planar pulse sequences at 3 T, and compared our algorithms with four other commonly used methods: average artifact subtraction (A...
متن کاملAn Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008